광고
광고
광고
광고
광고
광고
광고
광고
광고
광고
광고
광고
광고
광고
광고
광고
광고

뱀과 DNA, 태호복희와 여와

문화부 | 기사입력 2008/02/11 [01:55]

뱀과 DNA, 태호복희와 여와

문화부 | 입력 : 2008/02/11 [01:55]

뱀은 D N A 상징 (印;도장 = 복제,재생,부활) 
 



DNA+창조 


 

왼쪽그림은 인류태초의 시조 복희와 호와 + 오른쪽그림 프리메이슨? .. 공통된 그림은 콤파스와 자가 있습니다. 설계하고 계획하고 창조작업을 했다는 의미입니다. 지혜... 과학... 멋진 디자인.. 그리고 조화...! 이것이 바로 우주만물의 창조, 즉 우주인 과학자들(Elohim)에 의해서 인간복제(印;도장)를 비롯하여 DNA유전공학적 기술로서 과학적으로 창조되었다는 것입니다. 이것이 너와 나의 존재인 것입니다.


 

Notice in this image, on the top, the two entwined snakes and the ladder like ribbons between the serpents bodies.....does it remind you of anything? Remember that these images are thousands of years old. Today we still use the image of the entwined serpent as a sign of medicine, this has carried over from ancient times. What does the emblem of entwined serpents, the symbol for medicine and healing to this very day, represent? The discovery by modern science of the double helix structure of DNA offers the answer: The entwined Serpents emulated the structure of?the genetic code, the secret knowledge of which enabled the creation of the Adam. The first man the Annuaki created called the "Adam".

 
▷뱀머리를 가진 "나가神" & 북두칠성 神

캄보디안 앙코르 유적지의 돌다리 난간은 어김없이 7개의 머리를 가진 코브라형상이 조각되어있습니다. 이 뱀은 힌두교 신화에서 7대양을 상징한다고 하며 캄보디아의 건국신화에 최초로 등장하는 왕입니다. 이 뱀신 나가왕의 딸 소마공주와 서쪽의 먼 나라 아리아 데카국에서 온 칸브 왕자가 결혼하여 칸브자 (칸브의 아들)가 탄생하고 이들이 캄보디안의 시조로 전해져 옵니다. 그리고 엘로힘의 예언자 라엘(Rael)씨가 한반도에 방문직전 갑작스레에 북두칠성 UFO편대가 출현했습니다.

[참고]1999/8/12일 오후 6시 충남 태안군 안면도 남쪽 상공에 7개의 둥근 비행물체가 출현한 것을 영화사의 직원이 비디오로 담는데 성공했다. 이 UFO는 움직이지 않은 채 갑자기 3개로 합쳐졌다가 7개로 분열하는 등 마치 자신들의 출현의도를 알리려는 듯한 신호를 보냈다.

창세기에 기록된 '엘로힘'은 "하늘에서 내려온 사람들"이란 의미입니다
 

북두칠성 현무도는 보병궁(水)을 상징하고 있으며 뱀(龍)은 DNA관련됩니다.. 거북모양의 짐승(龜)은 수명을 상징하며 서로 얽혀 있는 모습이 불교의 상징 卍입니다.// 평남 강서군 삼묘리. 고구려의 벽화고분.

 

이미 선진국에서는 캐나다 국정교과서에 우주인에 의해 과학적으로 창조되었다는 우주인 기원설을 소개되고 있다. (우주인=ELOHIM=하늘에서 내려온 사람들)

 

가릉빈가(태을천상원군;우주인) -사람의 모양에 뱀의 형상, 하늘을 날아다니는 커다란 새의 사람형상(太乙天) + 뱀(DNA=창조) = 창조자(상원군=宇宙人=Elohim). 산높은 히말라야의 전설, 우리나라 불교사찰에 가보면 흔히 볼 수 있다. 인류는 우주인(Elohim)에 의해 DNA(뱀)로서 인간복제(印=도장)을 통해서 재생(=부활)도 가능하며 , 유전공학적 기술로서 과학적으로 창조했다는 것이다. 
 
 

생명나무의 열매는 과학(DNA창조)이다. 심지어는 부처님 손에 쥐여진 열매 혹은 여의주는 과학의 메커니즘(=신통력)을 상징한다. 

[라오콘] ..... 신,곧 절대권위에 도전한 인간상의 원조이다. 이 헬레니즘의 걸작 라오콘은 원래 청동으로 만들어진 작품이다 그것의 로마시대 복제품을 여기에 소장하고 있다. 거대한 에 몸을 감긴 세부자는 필사의 용트림을 하고 있지만 상황은 절망적이다. 온몸의 근육도 터질 듯이 그 긴장은 곧 죽음뒤에 이르는 경직으로 이어질 것을 예고하고 있다. 1506년 이작품이 발견되었을 때 미케란젤로의 경탄은 대단했었다 한다. 의롭게 저항한 신념을 나타낸 인간승리의 상징물이다. 

어머나 책까지 나왔나요?.. 뱀과 DNA와 인류의 기원: (서울=연합뉴스) 김형근 기자 = 뱀은 대부분의 창조신화에 등장한다. 기독교의구약성서에서부터 이집트의 벽화, 아마존 밀림지대 원주민의 민간신앙, 시베리아의샤만, 호주의 원주민 벽화에 이1瘦沮?뱀의 형상은 빠짐없이 나타난다. 이들 다양한 신화나 기록에 나오는 뱀의 모습은 다양하다. 두 다리가 달려 있거나, 날아다니는 것으로 알려져 있거나, 상상을 초월할 만큼 거대하거나, 서로의 몸을 꼬고 있는 두 마리가 함께 묘사돼 있기도 하다.

인류학자인 제레미 나비는 「우주뱀=DNA」(들녘刊)에서 두 마리의 뱀이 서로의몸을 꼬고 있는 모습이 이중 나선형 구조를 하고 있는 DNA와 닮아 있음에 주목한다._ 레비 스트로스의 저작들을 읽어나가다 "아스텍에서 '코아틀(coatl)'이라는 단어는 '뱀'과 '쌍둥이' 모두를 의미한다. 그러므로 케찰코아틀이라는 이름은 '깃털 달린 뱀(plumed serpent)'이나 '위대한 쌍둥이', 어느 쪽으로도 번역될 수 있다"를 읽고 놀라움을 금치 못한다. 
 
영국 Chilbolton 밀밭서클은 칼 세이건이 보낸 30여년전의 메세지에 응답일까요?.. 위 그림은 2001년 8월 당시 밀밭에서 발견된 미스터리 서클 모습이다. 만일 사실이라면 매우 충격적인 것입니다. 1974 년 11 월 16 일 푸에르토 리코 에 위치한, 직경 300 M 크기의 미국 아레시보 천문대에서 우주공간으로 라디오 전파가 발사되었는데 우주인의 답변이 왔습니다. 내용은 인류는 그들에 의해 DNA유전공학적 기술로서 과학적으로 창조되었다는 것입니다. (http://www.chez.com/cropcircles/reponse_chilbolton.htm )

뱀 =DNA =생명창조 
 
(왼쪽)직각 자를 들고 있는것이 태호복희(남신), 콤파스를 들어 올린 것이 여와(여신)으로 세계를 재생시켜 재창조하는 남여신. 중국 아스타 고분 7~8세기. (오른쪽)말하는 생명나무, 인도 17세기

인류의 탄생과 기원을 힌트라도 주듯이 DNA 생명창조를 말하고 있다. 위 그림에서 보듯이 뱀은 곧 DNA를 상징하는 것이기 때문이다. 뱀은 DNA를 상징하며 생명, 창조, 권위를 말한다.

  성서 창세기 49장에는 이런 야곱의 예언 내용이 있다.

  "유다는 사자새끼로다. 홀이 함께 하는데, 실로가 올 때까지다. 단은 이스라엘의 한 지파와 같이 그 백성을 심판하리로다. 첩경의 독사(뱀)가 되어 말탄 자의 말굽을 물어 떨어 뜨리리라. 여와여 나의 구원을 기다리나이다."

그런데, "단"지파는 유대민족이 페르시아와 바빌로니아와 그리스와 로마의 침략으로 순수 셈족 혈통을 상실하고 2차 대전때 히틀러의 게르만족 제일주의로 인하여 600여 만명이 학살당하기 훨씬 이전에 기원전 12-11세기를 전후로 팔레스틴에서 동북방으로 사라졌다고 구약성서는 기록하고 있다. 순수 셈(수메르)족 혈통을 유지한 셈이다. 팔레스틴 동북방이면 중앙 아시아 알타이 지역이다. 그런데, 이 단지파는 신상을 숭배하는 지파로 기독교에서는 귀신들린 지파로 오인당한 지파이기도 하다. 이들 단지파의 일부는 지금의 덴마크(단-마크)를 건국했고 일부는 어디로 사라졌는지 성서 고고학에서는 밝히지 못하고 있다. 그런데, 단군조선의 상징인 청동검의 모양이 팔레스틴 지역에서 출토된 청동검 모양과 평남지역에서 출토된 청동검 모양이 유사함이 밝혀졌다. 또한 북한 대동강변에서 기원전 10세기의 고대 히브리어 문자가 기록된 치우천황 와당 5개가 일제 시대에 출토되어 출토한 일본인이 국립 중앙 박물관과  국립 광주 박물관에 소장되어 있다. 추석과 동지풍습이 이스라엘 민족과 거의 같으며, 고대 이스라엘인들의 유골구조가 한국인 유골구조가 동일함이 고고학적으로도 증명되기도 했다. 단지파와 단군조선의 관계성의 연구가 요구된다.   


대동강변에서 출토된 고조선시대 와당
 





 

자료는 북한 평양 대동강변에서 출토된 고대 히브리어 문자가 기록된 단군조선 유물
서울대학교 히브리어전문가인
신사훈 박사가 고조선 와당에 씌여 있는 고대 히브리어를 해독했다



 

[자료]

 

1.디옥시리보핵산(Deoxyribonucleic acid)의 약자


개요

DNA는 2개 가닥이 나선 모양을 이룬 2중나선 중합체이다. ...
중합효소연쇄반응(polymerase chain reaction), 또는 간단하게 DNA 증폭이라 불리는 ...

모든 살아 있는 세포에서 볼 수 있고 유전형질을 전달하는 복잡한 유기화학적 분자구조.


DNA의 물리적 특성
물리적·효소적 절단 등이 가해지지 않으면 바이러스나 세균 전체의 핵산 크기에 해당하는 약 1억 2,000만의 분자량을 갖는 거대 분자의 DNA를 세포로부터 추출할 수 있다. DNA를 함유하고 있는 용액은 점성(粘性)이 있으며, 여러 가지 조작에 의해 저분자 조각으로 절단할 수 있다. DNA의 구성원인 퓨린피리미딘염기는 질소를 함유하는 이질 환형구조를 하고 있기 때문에 자외선을 흡수하며, 열이 가해지면 나선의 구조가 깨지면서 보다 많은 양의 자외선을 흡수할 수 있는 상태로 되고 점성은 약해진다.
또한 이 과정 중 DNA는 불규칙적으로 감기게 되는데, 이러한 열에 의한 DNA의 변화를 'DNA 열변성'(熱變性)이라 한다. 열변성을 일으킬 수 있는 온도를 용해온도라 하며, 이 용해온도는 DNA를 구성하고 있는 염기의 조성에 따라 달라진다. 즉 구아닌과 시토신 염기의 함량이 높은 DNA는 아데닌과 티민의 함량이 높은 DNA보다 용해온도가 높아서 더 안정한데, 이는 구아닌과 시토신 간의 수소결합이 아데닌과 티민의 수소결합보다 강하기 때문이다(→ 뉴클레오티드). 용해온도보다 약간 높은 온도에서는 이중나선의 DNA 가닥이 분리되며, 온도가 천천히 낮아지면 원래의 2중나선 구조는 회복되지만 때때로 DNA 가닥 간의 재조합이 일어나기도 한다.


DNA의 구조


DNA 구조
DNA 구조



2중의 긴 폴리뉴클레오티드 사슬로 구성되어 있으며, 2개의 폴리뉴클레오티드 가닥이 퓨린과 피리미딘의 염기결합으로 2중나선을 이룬다. 구아닌염기(퓨린)는 시토신염기(피리미딘)와 3중 수소결합을 하며, 아데닌염기(퓨린)는 티민염기(피리미딘)와 2중 수소결합을 한다.


당(디옥시리보오스)은 인산 이에스테르 결합으로 뉴클레오티드를 연결하여 각 DNA 가닥의 뼈대를 이룬다. 염기는 소수성(疏水性)이 커서 두 가닥의 DNA 안쪽에 체적되며, 두 DNA 가닥은 2중나선 구조를 이룬다. 인간세포의 DNA는 일직선으로 폈을 때 약 2m가 되며, 인간을 구성하는 세포들 전체에서 DNA를 분리하여 연결하면 지구와 태양 사이를 연결하고 다시 돌아올 수 있을 만한 길이가 된다.


핵 안에서 DNA는 히스톤 및 비(非)히스톤 단백질과 결합하여 염주 모양의 뉴클레오솜을 형성한다. 약 140개의 염기쌍에 해당하는 DNA가 이 뉴클레오솜을 감고 있으며 뉴클레오솜 간의 거리는 20~40 염기쌍 정도가 된다.
이러한 뉴클레오솜 구조를 취함으로써 길이가 긴 DNA가 매우 좁은 공간의 핵 안에 존재할 수 있게 된다. 여러 종류의 바이러스·엽록체·미토콘드리아·플라스미드 등의 DNA는 고리 모양이며, 8자모양으로 감기어 초나선구조(超螺旋構造)를 이룬다.


유전물질로서의 DNA
20세기에 들어 생물학의 놀라운 발전 중 하나는 유전물질의 규명 및 유전자의 발현양상을 분자 수준에서 밝혔다는 점이다. 1869년에는 세포의 핵으로부터 질소와 인을 함유하고 있는 '뉴클레인'이라고 하는 물질이 추출된 바 있으나(지금은 DNA라는 사실이 밝혀졌음), 사람들은 염색체의 단백질 안에 유전정보가 들어 있을 것으로 믿고 있었다. 그 당시에는 핵산이 단 4개의 염기·당·인산으로 구성된 반복 단순구조로서 단지 염색체의 단백질을 고정시키는 물질일 것으로 추측하고 있었다. 왜냐하면, 핵산이 단지 4종류의 단위블럭으로 구성된 단순구조인 반면, 단백질은 20종류의 아미노산으로 구성되어 있어서 유전형질의 구조적·기능적 다양성을 제공할 수 있을 것으로 믿었기 때문이었다.


DNA가 유전정보의 매개체로 작용한다고 하는 증거는 지극히 단순한 미생물학적 연구에 의해 밝혀졌다. 이러한 기초적 연구 중의 하나는 1944년 미국의 유전학자인 에이버리 등에 의해 수행되었다. 그연구결과는 세균성 폐렴을 일으키는 폐렴균의 독성을 연구한 영국의 세균학자 그리피스의 실험결과를 근거로 하고 있다. 그리피스는 폐렴균의 발병성은 세균을 둘러싸고 있는 다당체 협막(莢膜 capsule)에 의한 것이며, 이 다당체 막을 갖고 있는 폐렴균은 생쥐에 폐렴을 일으키고 배양시 배지 위에서 소면(素面 smooth)의 윤택이 있는 커다란 콜로니를 형성하지만, 계대배양(繼代培養)을 계속하면 어떤 폐렴균은 다당체 세포막을 소실하여 콜로니의 크기가 작아지며 조면(粗面 rough)의 콜로니를 형성할 뿐 아니라 감염성을 잃어버린다는 것을 밝혀냈다. 이러한 소면과 조면의 콜로니를 형성하는 세균은 영문의 앞글자를 따서 S형과 R형 세균으로 각각 명명했다. 그리피스는 살아 있는 R형 또는 열을 가해 죽인 S형 폐렴균을 각각 생쥐에 주입하였을 경우 둘 모두 감염성이 없었으나, 살아 있는 R형과 열을 가해 죽인 S형 폐렴균을 섞어서 쥐에 주입하였을 경우 폐렴에 감염된다는 것을 발견했다. 또 폐렴에 감염되어 죽은 생쥐의 체내에는 S형이 존재함을 확인함으로써 죽인 S형의 어떤 물질, 즉 '형질전환 물질'이 R형이 S형으로 형질전환하는 데 기여했음을 밝히게 되었다.
에이버리 등은 이러한 그리피스의 실험을 기초로 한 자신들의 실험결과에 근거하여 다당체 협막을 형성하는 데 관여하는 유전자인 DNA는 죽은 감염성 S형으로부터 살아 있는 비감염성 R형의 DNA에 전이되어 감염성 S형으로 형질전환이 이루어지며, 이러한 형질은 계속해서 자손에게 유전됨을 확인했다.


1950년에 허시와 체이스는 대장균에 감염하는 박테리오파지(단순히 파지라고도 함)를 이용한 실험을 통하여 DNA가 유전물질임을 결정적으로 밝히게 되었다. 파지는 육각의 머리, 원통형 꼬리, 6개의 꼬리섬유를 가진 말판(末板)으로 구성되어 있다. 이 파지의 머리 부분에는 DNA가 들어 있으며 단백질 막이 DNA를 둘러싸고 있다. 파지가 숙주인 대장균을 감염시킬 때 자신의 유전물질을 숙주의 체내에 주입한 후 숙주의 대사기구를 이용하여 새로운 파지를 합성하기 시작한다. 충분한 수의 파지를 합성하고 숙주의 물질대사 기능이 마비되면 숙주세포의 세포막을 파괴하고 밖으로 나온다. 숙주를 죽이고 밖으로 나온 새로 합성된 파지들은 다시 다른 대장균을 공격하여 생활사를 반복한다.


이러한 사실을 기초로 허시와 체이스는 2가지 종류의 파지를 준비했다. 한 종류는 방사선 동위원소로 파지의 단백질을 표지(標識)하고 다른 종류는 파지의 DNA를 표지했다. 이들 파지를 각각 대장균에 감염시킨 후 방사선 동위원소의 위치를 확인한 결과, 단백질에 표지한 방사선 동위원소는 감염 후 숙주의 체외에 남아 있는 반면, DNA에 표지한 방사선 동위원소는 숙주의 체내에 존재하고 새로 만들어진 파지의 DNA에도 존재함을 알 수 있었다. 이러한 결과로 허시와 체이스는 파지의 유전물질은 단백질이 아닌 DNA임을 증명했다. 위에서 언급한 바와 같이 DNA는 거의 모든 생물의 유전물질이지만, 레트로바이러스와 같은 여러 종류의 바이러스들은 유전물질로 DNA 대신 RNA를 갖고 있다.


DNA 복제

웟슨과 크릭의 모델에 따른 DNA 복제 가상도. 화살표는 ...

DNA복제는 DNA 중합효소에 의해 주형 DNA에서 상보적 및 반보존적으로 이루어진다. DNA 합성에 사용되는 뉴클레오티드의 선구물질(先驅物質)은 4종류의 디옥시뉴클레오시드 3인산 TTP·dATP·dCTP·dGTP이다(→ 뉴클레오시드, 뉴클레오티드). DNA 합성과정에서 DNA 중합효소는 새로 합성되는 말단 뉴클레오티드의 3'-OH기에 디옥시리보오스에 결합되어 있는 5'-PO4기를 결합시켜 3', 5'-인산이 에스테르 결합을 촉매한다.


이 반응에서 디옥시리보오스 3인산 말단에 붙어 있는 2개의 인산기는 피로인산(pyrophosphate/PPi)의 형태로 떨어져 나가며, 피로인산분해효소에 의하여 2분자의 인산으로 나누어진다. 이와같이 DNA 중합효소는 뉴클레오티드의 3'히드록시기(-OH)에 새로운 뉴클레오티드의 5'인산기(-PO4)를 연결하기 때문에 DNA 중합효소의 관점에서 5'→3'의 방향성을 갖게 되며, DNA 합성의 개시를 위해서는 반드시 주형 DNA에 결합하고 있는 폴리뉴클레오티드, 즉 프라이머(primer)가 존재해야 한다.


프라이머는 다음과 같은 방법으로 합성된다. DNA 이중나선의 복제원점에서 DNA 가닥의 분리가 일어나 1가닥이 되면 이 부위의 DNA를 주형으로 8~9개 정도의 'RNA 프라이머'가 합성되는데, 상보적 염기결합 원칙에 따라 DNA의 A·T·G·C는 U·A·C·G의 뉴클레오티드가 프라이머 합성효소(primase)에 의해 각각 결합되면서 이루어진다. 이와 같이 RNA 프라이머가 합성되면 DNA 중합효소는 이 RNA 프라이머의 3'-OH기에 새로운 뉴클레오티드를 중합시킴으로써 DNA가닥의 생장이 이루어지게 된다.


RNA 프라이머는 풀려진 DNA 이중나선의 양쪽에 붙게 되므로 방향은 반대이지만 동시에 2개의 새로운 DNA 가닥이 주형 DNA로부터 생장된다. 이렇게 DNA가닥의 생장이 이루어지면 DNA 중합효소에 의해 DNA 합성을 해나가는 DNA 이중나선의 앞쪽 부위가 점차적으로 열리게 되는데, 이러한 DNA 합성의 진행부위를 '복제포크'라 한다. DNA 중합효소에 의한 DNA 합성의 방향은 항상 5'→3'의 방향성을 갖기 때문에 주형 DNA의 이중나선 중 DNA 중합효소의 진행방향과 반대방향의 DNA 가닥을 주형으로 하여 합성되는 DNA 가닥은 복제포크의 진행방향과 반대방향으로 생장하게 된다. 따라서, DNA 가닥의 합성은 연속적으로 이루어지지 못하고 100~1,000개 정도의 뉴클레오티드로 형성된 DNA 조각이 생기게 된다. 이러한 DNA 조각은 이를 발견한 과학자의 이름을 따서 '오카자키 조각'(Okazaki fragment)이라 하며, 오카자키 조각들 사이에 생긴 틈은 DNA 연결효소인 리가아제(ligase)에 의해 연결된다. 또한 DNA 합성의 연속성과 비연속성의 특성에 따라 복제포크의 이동방향과 같은 방향에서 연속적으로 합성되는 DNA 가닥은 연속사(連續絲 leading strand)라 하며, 오카자키 조각들로 형성되는 비연속 DNA 가닥은 지체사(遲滯絲 lagging strand)라 한다.


유전정보의 매개체로서의 DNA:유전암호의 전사 및 번역
DNA에 담겨진 유전정보는 RNA로의 전사(轉寫 transcription)가 이루어지고 유전정보의 메시지를 넘겨받은 RNA, 즉 전령RNA(messenger RNA/mRNA)가 아미노산의 서열을 결정해줌으로써 리보솜에 의해 단백질로의 번역이 이루어지게 된다. 이렇게 합성된 단백질은 세포 내에서 세포구조물의 형성(예를 들면 콜라겐), 혈액에서 산소의 운반(예를 들면 헤모글로빈), 면역작용(예를 들면 면역글로블린), 세포내 다양한 물질대사의 매개(예를 들면 효소) 등과 같은 특유의 기능을 발휘하게 된다. 앞에서 언급한 바와 같이 DNA에 담긴 유전정보는 항상 RNA를 매개로 하여 전달된다.


진핵세포의 경우 핵 안에 DNA가 존재하기 때문에 유전정보의 RNA로의 전사는 항상 핵 안에서 이루어지며, 핵이 없는 원핵세포의 경우라도 유전자 안의 유전정보는 직접 단백질로 번역되지 않고 mRNA로의 전사 후에 이루어진다.


DNA의 RNA로의 전사
DNA에 담긴 유전정보는 다음과 같은 단계에 의하여 mRNA로 전사된다. ① 수소결합이 끊어져서 DNA 이중나선구조가 풀린다. ② RNA 중합효소에 의해 DNA 염기에 상보적으로 RNA가 합성된다. ③ 이렇게 합성된 mRNA는 세포질 밖으로 나와서 리보솜과 결합함으로써 유전정보가 단백질로 번역된다.


진핵세포(→ 진핵생물)의 경우 mRNA의 합성은 핵 안에서 이루어지는데, mRNA의 5'말단에는 메틸화된 구아닌산 등이 붙어 매듭(capping)이 이루어지며, 3' 말단은 20~200개 정도의 폴리(A)꼬리가 붙게 된다. 5'말단의 매듭은 RNA 분해효소(RNase)에 의한 mRNA의 분해를 방지하며, 3'말단의 폴리(A) 꼬리는 mRNA의 수명에 영향을 미친다. 합성된 mRNA는 리보핵단백질과 결합하여 리보핵단백질(ribonucleoprotein particle/RNP) 입자를 형성한 후 핵막을 통과하여 세포질로 나오게 된다. 원핵세포의 경우는 핵이 없기 때문에 전사가 이루어짐과 동시에 리보솜과 결합하여 단백질 합성이 이루어진다.


단백질 합성(유전암호의 번역)

단백질의 합성

mRNA의 염기서열에 담겨진 유전정보는 리보솜 안에서 아미노산 서열로 번역되어 단백질 합성을 시작한다. 단백질 합성의 시작은 아미노산과 이를 운반하는 운반 RNA(transfer RNA/tRNA)와의 결합이다. 20종류의 아미노산은 각기 특이 아미노아실-tRNA 합성요소(aminoacyl tRNA synthetase:아미노산 활성화효소라고도 함)에 의해 ATP로부터 에너지를 얻어 tRNA와 결합하여 아미노아실-tRNA 복합체를 형성하며, 리보솜에서 합성되는 폴리펩티드에 아미노산을 넘겨줄 수 있는 활성화 상태가 된다.


tRNA는 3개의 염기로 구성되는 안티코돈(anticodon)을 지니고 있으며, 이 안티코돈과 mRNA상의 3개의 상보적염기(codon)가 결합한다. 아미노아실-tRNA의 안티코돈과 mRNA의 코돈과의 결합은 리보솜 안에서 이루어지며, tRNA가 운반해온 아미노산과 합성되고 있는 폴리펩티드 사이에 펩티드결합이 이루어지게 된다. 또한 합성되는 폴리펩티드의 맨 처음 아미노산은 항상 메티오닌이다. 따라서 mRNA 5'말단의 메티오닌을 암호화하는 코돈은 5'AUG3'이며 이에 결합하는 tRNA상의 안티코돈은 3'UAC5'가 된다.


중심원리
앞에서 말한 바와 같이 DNA로부터 전사와 번역까지의 진행방향은 다음과 같이 나타낼 수 있다. 즉, DNA→RNA→단백질. 유전정보의 단계적 전사와 번역과정이 밝혀진 초기에는 이와 같은 유전정보의 진행이 거의 절대적인 것으로 받아들여졌다. 반대로 말하면, 중심원리(Central dogma)란 '단백질 안에는 유전암호가 보존되어 있지 않으며, 단백질에서 RNA가 만들어지고, RNA로부터 DNA가 만들어지는 역방향으로는 진행되지 않는다'는 정설이다. 그러나 이와 같은 중심원리는 RNA도 DNA를 만들 수 있으며 DNA에는 전사되지 않는 부위가 있다고 하는 사실 등 다음의 2가지 경우가 밝혀지면서 일부의 수정이 필요하게 되었다. ① 레트로바이러스라 하는 몇몇 종류의 바이러스는 DNA 대신 RNA를 유전물질로 갖고 있으며, 숙주를 감염하였을 때 역전사효소(reverse transcriptase)를 만들어내어 자신의 유전물질인 RNA로부터 DNA를 합성하여 숙주의 DNA로 끼어들어간다. ② DNA에는 RNA로 전사가 이루어지지 않는 비전사 부위가 있다. 진핵세포의 경우에는 전체 DNA에서 이러한 비전사 부위가 상당 부분 존재하며, 세균과 같은 원핵세포의 경우는 거의 없다.


유전암호의 번역
4개의 염기가 어떻게 20가지 종류의 아미노산의 암호가 되는가 하는 문제는 대단히 중요하다. 만일 1개의 염기가 1개의 아미노산 암호가 된다면 단지 4개의 아미노산만이 결정될 것이다. 만일 2개의 염기가 1개의 아미노산의 암호가 된다면 16개의 조합이 가능하지만, 아미노산의 종류가 20가지이기 때문에 불충분한 수가 된다. 3개의 염기 조합은 64가지의 암호화 코드를 가능하게 하며, 20가지 아미노산 암호화에 필요한 최소수보다 많게 된다. 3개의 글자로 구성된 암호, 즉 트리플렛(triplet)은 다음과 같은 3가지 방법으로 이루어질 수 있다. ① 글자의 앞뒤가 서로 중첩된다. ② 글자가 중첩됨이 없이 3개씩 끊어진다. ③ 글자가 중첩 및 끊어짐이 없이 트리플렛을 이룬다. 그러나 ①과 ②의 경우는 생체에서 불가능한 경우이며, ③의 경우처럼 mRNA의 특정염기부터 3개의 염기가 트리플렛을 이루어 하나의 아미노산을 암호화한다. 예컨대, mRNA 내의 트리플렛 UUU는 페닐알라닌의 암호가 되며, DNA 내에서는 AAA에 해당한다. AAA와 CCC는 리신프롤린의 유전암호가 된다. 단백질사슬에서 아미노산을 결정하는 트리플렛 유전암호는 다음 표와 같다.


표에서 보는 바와 같이, 4가지의 염기가 3글자의 조합으로 트리플렛을 형성하여 64개의 유전암호를 형성하며 20가지 아미노산을 결정한다. 또한 메티오닌과 트립토판만 1개의 유전암호를 가질 뿐 2~6종류의 트리플렛이 하나의 아미노산을 결정하는 유전암호가 되는데, 이를 '유전암호의 퇴보'(genetic code degeneracy)라 한다. 페닐알라닌은 2종류의 유전암호를, 세린은 6종류의 유전암호를 가진다. 메티오닌의 트리플렛 AUG는 단백질 합성의 개시신호가 되어 mRNA에서 첫번째 유전암호가 되며, UAA·UGA·UAG 3개의 트리플렛은 단백질 합성의 종말신호로 작용한다. 다시 말하면 mRNA에서 단백질 합성의 개시는 AUG 트리플렛에서 시작하여 UAA, UGA 또는 UAG의 트리플렛에서 끝나게 된다.


▷상세한 정보를 보시려면 단백질 사슬에서 아미노산을 암호화하는 뉴클레오티드 트리플렛(코돈) 도표를 참조하십시오.


유전암호의 돌연변이
세포의 DNA는 유사분열감수분열이 일어나기 전에 정확히 복제되어야 한다. 그러나 다세포생물의 일생 동안 일어나는 엄청난 횟수의 세포분열과 유전자 구조의 복잡성 등을 감안한다면 복제과정에서의 실책은 얼마든지 일어날 수 있다. 복제과정 중 생긴 DNA상의 실책은 직접적으로 유전암호의 돌연변이를 일으키게 된다. 많은 종류의 돌연변이들은 그 원인이 분명하지 않은데, 이러한 돌연변이를 자연발생적 돌연변이라 한다. 자외선이나 X선 등과 같은 이온화방사선, 독극성 화학물질, 바이러스 등이 돌연변이의 원인이 되기도 한다.


돌연변이의 종류
염기의 결실(缺失) 또는 첨가는 틀이동 돌연변이(frame-shift mutation)를 일으킨다. 예컨대 유전암호의 트리플렛이 GAC TCA TTA ACG …… 등으로 왼쪽부터 읽혀져 나가도록 구성된 유전자의 경우(이 염기서열은 RNA에 CUG AGU AAU UGC …… 등으로 전사됨) 첫번째 G가 결실되면 유전자 암호의 트리플렛이 RNA에서 UGA GUA …… 등으로 하나씩 당겨져 구성되기 때문에 원래의 유전자 암호와는 전혀 다른 유전암호가 형성된다. 또한 DNA의 서열에서 첫번째 코돈 A앞에 C가 첨가되면 RNA로 전사된 후 트리플렛은 하나씩 밀려가면서 형성되어 전혀 다른 단백질이 합성된다. 즉 CGU GAG UAA UUG C ……가 된다.


1개의 염기가 다른 종류의 염기로 치환되어 유발되는 돌연변이를 치환돌연변이 또는 점돌연변이(point mutation)라 한다. 점돌연변이는 1개의 유전암호만을 변화시켜 단백질 내 1개의 아미노산만 바뀌지만 단백질의 기능에는 큰 영향을 미치는 경우도 있다. 예를 들면, 산소의 운반능력이 크게 결여되어 있는 겸형적혈구(鎌形赤血球)는 적혈구의 β헤모글로빈을 구성하는 폴리펩티드의 사슬 중 6번째 아미노산인 글루타민이 발린으로 바뀌어 일어난다. 즉 글루타민의 유전암호인 GAA(또는 GAG)에 점돌연변이가 일어나 GUA(또는 GUG)로 바뀌어 발린의 유전암호가 되기 때문이다. 넌센스 돌연변이(nonsense mutation)는 어떤 유전암호가 단백질 합성의 종말신호가 되는 UAA·UGA·UGA 등으로 변화되는 경우를 말한다.


DNA 회복
세포의 DNA가 여러 가지 물리적·화학적 돌연변이원(突然變異原)에 의해 손상을 입게 되면 세포는 자기방어적 수단인 DNA 회복과정을 통하여 정상구조로 회복된다. 세포에는 여러 가지 DNA 회복 메커니즘이 있는데, 절제회복(切除回復 excision repair), 후복제회복(後複製回復 post-replicational repair), 광재활성(光再活性 photoreactivation), 재조합회복(再組合回復 recombinational repair) 등이 있다. 일반적으로 DNA 회복에 관여하는 효소들은 DNA의 손상 부위를 인식하여 제거하고 원래의 구조로 회복시킨다. 사람의 유전병 중 하나인 XP라고도 하는 색소건피증(xeroderma pigmentosum)은 자외선에 의한 DNA 손상을 회복하지 못하여 발생하는 피부암의 일종이다.


유전자의 조절
1961년 자코브모노는 대장균(E. coli)에서 유전자의 조절에 관한 메커니즘으로 오페론설을 내놓았다. 즉, 유전자는 그 기본단위로 작동유전자(operator gene)·조절유전자(regulatory gene)와 실질적 유전자인 구조유전자(structural gene)들로 구성되고, 조절유전자가 만드는 억제물질(repressor)에 의해 구조유전자의 발현이 조절된다는 것이다. 이러한 기본적 유전자의 단위를 오페론이라 한다.


진핵세포의 유전자는 엑손(exon)과 엑손의 사이사이에 1개에서 수십 개의 인트론(intron)으로 구성되어 있다. 인트론은 나중에 스플라이싱(splicing) 메커니즘에 의해 잘려진다.


Macropaedia| 李正燮 참조집필

 

2.항화의 열쇠 세포 이야기

한 줄, 두 줄 늘어나는 얼굴의 주름살을 볼 때마다 드는 생각! 사람은 왜 늙어갈까? 늙지 않는 방법은 과연 없을까? 누구나 한 번쯤은 이런 생각을 해본 적이 있을 것이다. 세계 의학계도 마찬가지였다. 늙지 않는 방법 찾기에 혈안이 돼왔다. 그 결과 작은 실마리 하나를 찾아내기에 이르렀다. ‘사람은 나이가 들수록 호르몬 분비가 줄어든다.’는 사실을 발견해냈던 것이다.

의학자들은 생각했다. ‘부족해진 호르몬을 인공적으로 보충해주면 노화가 늦춰지지 않을까?’ 그 시도는 적중한 듯 보였다. 실제로 나이가 들수록 점점 분비량이 줄어드는 성장호르몬과 성호르몬을 인공적으로 보충해주자 몸의 노화가 더디게 진행됐던 것이다.

다들 환호했다. 인류의 오랜 숙원이 풀릴지도 모른다는 기대 때문이었다. 그러나 그 기쁨도 잠시뿐. 노화를 예방하기 위해 우리 몸의 호르몬이 부족하지 않도록 인공적으로 호르몬을 공급해주자 전혀 예상치 못한 문제가 발생했다.

우리 몸 스스로의 호르몬 분비 능력이 상실돼 버렸던 것이다. 외부에서 들어오니까 더 이상 호르몬 분비를 안 해버렸던 것이다. 강남차병원 김상만 교수에 따르면 “항노화의 문제를 호르몬으로 해결할 수 있다는 시각은 이때부터 사라졌다.”고 밝히고 “그래서 주목하기 시작한 것이 바로 우리 몸의 세포”라고 말한다.

호르몬의 영향을 받아서 우리 몸에서 실질적인 일을 하는 세포를 활성화시켜주는 것이 노화의 열쇠를 풀 새로운 단초로 부각됐던 것이다. 그리하여 내린 결론은 한 가지였다. 세포의 파괴=노화와 질병이었고, 세포의 파괴 촉진=노화와 질병 촉진으로 인식하기 시작했던 것이다.

이때부터 세계 의학계의 화두는 우리 몸의 세포를 활성화시키는 방법 연구에 모아졌다. 그리고 결국 그 방안을 담은 7가지 가이드라인을 제시하기에 이르렀다.

세포를 활성화시키는 7가지 가이드라인


1. 아침 식사는 반드시 할 것.
2. 적당한 체중을 유지할 것.
3. 규칙적인 운동을 할 것.
4. 간식하지 않기
5. 담배 안 피우기
6. 적당한 음주하기
7. 소식하기


김상만 교수는 “이상의 7가지 지침은 내 몸의 세포를 활성화시켜 노화를 예방하고 장수를 가능케 하는 최선의 비책으로 강조되고 있다.”고 밝히고 “특히 이 중에서 모든 학자들이 동의하는 것이 바로 소식”이라고 말한다.

세포를 활성화시키는 소식의 ‘힘’

내 몸 세포가 생생하게 일을 잘하기 위해서는 소식을 하는 것이 좋다! 왜 그럴까? 소식을 하면 왜 세포에게 좋을까?

이 물음에 김상만 교수는 “세계 장수촌에 가보면 그 사람들의 공통적인 특징 중 하나가 조금 먹는다는 것”이라고 밝히고 “따라서 건강장수를 위해서는 무엇을 먹는 것보다 무엇을 안 먹는 것이 더 중요하다는 결론을 내린 상태”라고 소개한다.

그 이유를 알려면 조금 복잡한 우리 몸의 생리기전을 알아야 한다. 자, 조금 쉽게 생각하자. 내가 일을 하고 걸어다니고 사랑도 하고…기타 등등의 일상생활을 하려면 무엇이 필요할까? 반드시 내가 필요한 만큼의 에너지가 만들어져야 한다. 그 필요한 에너지를 만들기 위해서는 흔히 3대 영양소가 사용된다. 모두들 잘 알고 있는 탄수화물, 지방, 단백질이 바로 그것이다.

그런데 여기에 놀라운 비밀이 하나 숨어있다고 한다.
김상만 교수에 따르면 “오래 사는 사람들의 특징 중 하나가 바로 지방을 에너지로 쓰는 사람이더라.”는 것이다. 지방을 에너지로 써? 조금 생소할 것이다. 그 이유를 묻는 질문에 김 교수는 “지방은 에너지 함량이 아주 높을 뿐더러 에너지 효율도 좋다.”고 밝히고 “그런 지방을 에너지로 쓰면 우리 몸의 지방이 찌꺼기로 쌓이고 창고에 쌓이지 않게 되면서 내 몸에는 항상 에너지가 콸콸 넘치는 상태가 될 수 있다.”고 말한다. 그것이 바로 내 몸 세포를 활성화시키는 비결이 된다는 것이다.

그러기 위해서는 어떻게 해야 할까?
“조금 덜 먹는 소식을 하라.”는 게 김상만 교수의 처방이다. 그렇게 해서 우리 몸의 세포를 적당히 배고프게 해주라고 권한다. 그래야만 세포에서 에너지를 만들어내는 미토콘드리아가 제 일을 하게 되고 늘 일을 하는 세포는 활기차고 생생한 활력을 유지할 수 있다는 것이다.

그런데 어떤가? 현대인들은 배고픔을 잘 참지 못한다. 걸핏하면 과식을 즐긴다. 너무 자주 먹고 너무 많이 먹고 너무 탄수화물 위주로 먹는다. 그렇게 되면 내 몸의 세포가 배고플 여유가 없다. 따라서 지방을 에너지로 전환시키는 일도 하지 않게 된다. 생각해보라. 비록 에너지 효율은 떨어지지만 당장 에너지로 쓸 수 있는 탄수화물이 넘쳐나는 데 굳이 힘들여서 지방을 에너지로 전환시키는 일을 하고 싶겠는가?

그 결과는 뻔하다. 지방은 하루하루 우리 몸 구석구석에 축적되고 제 일을 하지 않는 세포는 노화되고 퇴화되는 필연적인 수순을 밟게 되는 것이다. 따라서 세포를 활성화시키기 위해서는 이 같은 연결고리를 차단해야 한다. 세포가 지방을 갖고 에너지로 쓸 수 있는 내 몸 환경을 만들어줘야 한다. 구체적인 방법을 알아보자.

지방을 에너지로 쓰는 내 몸 만들기 비결

내 몸의 세포가 지방을 에너지로 쓸 수 있는 몸 상태를 만들기 위해서는 몇 가지 단계가 필요하다는 게 김상만 교수의 주장이다. 이를 요약하면 다음과 같다.


 

▶호르몬의 균형을 맞춰줘야 한다
지방을 에너지로 쓰는 호르몬은 성장호르몬과 성호르몬이다. 따라서 이들 호르몬의 균형이 항상 맞춰져 있어야 한다.


 

▶미토콘드리아쪽으로 지방을 가공해줘야 한다
미토콘드리아는 우리 몸속의 발전소이다. 우리의 생명을 유지하는 에너지는 세포 속의 미토콘드리아에서 생성되기 때문이다. 그런데 그 일을 하기 위해서는 지방이 가공돼 미토콘드리아쪽으로 보내져야 한다. 이때 반드시 필요한 것이 있다. 미네랄과 비타민이다. 특히 비타민 B군과 비타민 C, 그리고 마그네슘이 꼭 필요하기 때문에 이들 영양소가 결핍되지 않도록 신경써야 한다. 제철 과일이나 채소를 적극적으로 섭취하는 것이 도움이 된다.


 

▶세포가 배고프다는 신호가 들어가야 한다
이것은 육체적으로 느낄 수가 없다는 데 함정이 있다. 세포가 배고픈 것과 저혈당은 엄연히 다르기 때문이다. 저혈당은 단순히 혈당이 떨어진 것을 말한다. 사람은 저혈당이 오면 그 혈당을 올리기 위해서 배가 고프다는 느낌을 받게 되고 그러면 무엇이든 허겁지겁 먹게 된다.

하지만 세포가 배고프다는 것은 세포 내의 에너지가 적다는 신호가 들어가야 한다. 그 신호는 우리 몸에서 세포의 산화, 환원에 관여하는 효소에 의해서 결정된다. 그것이 낮아야만 세포가 배고프다는 신호를 보내게 되고 그러면 세포에서 지방을 에너지로 쓰라고 지시하는 효소가 활성화되면서 미토콘드리아가 지방을 분해하기 시작하기 때문이다.

그렇게 하기 위해서는 탄수화물 위주의 식사를 줄이고 유산소 운동을 해야 한다. 유산소 운동을 하면서 약간 배가 고플 때 그 배고픔을 참을 줄 알아야 한다. 배고프기 전에 뭘 먹거나 배가 고프자마자 뭘 먹거나 하면 영영 세포는 배가 고플 틈이 없게 된다.

그 결과 지방을 분해하는 대사가 퇴화된다. 음식문화가 발달된 현대사회에서 미식가일수록 빨리 죽는 이유가 바로 여기 있다. 내 몸에서 배가 고프다는 신호를 보낼 시간적 여유를 주지 않아서이다.
따라서 내 몸 세포를 생생하게 유지하려면 적당히 균형된 식사를 해야 하고 적당한 배고픔을 즐기면서 사는 것이 가장 좋다는 게 김상만 교수의 지론이다.


 

▶지방분해 효소를 활성화시켜야 한다
지방분해 효소를 활성화시키기 위해서는 비타민과 미네랄이 충분히 공급되어야 한다. 비타민 B군이 중요한데 특히 니아신과 판토텐산이 부족되지 않도록 해야 한다. 니아신은 가다랑어나 농어 고등어, 다랑어, 현미밥, 아보카도 등에 많이 들어있고 판토텐산은 닭간이나 돼지간, 소간, 닭가슴살, 청국장 등에 다량 함유돼 있다. 또 하나! 지방분해 효소를 활성화시키기 위해서는 우리 몸이 지방을 에너지로 쓰는 것을 잊지 않도록 육체적 운동도 많이 해주어야 한다. 현대인들에게는 특히 더 그렇다.


 

오늘도 우리 몸에서 끊임없는 생성과 소멸을 거듭하면서 우리 몸의 생명활동을 주도하고 있는 내 몸의 세포. 그런 내 몸의 세포에 활기를 주고, 활력을 주는 묘책은 의외로 간단하다. 김상만 교수는 “오늘부터 당장 조금 덜 먹고, 많이 움직이려는 노력, 그것 이상의 비법은 없다.”고 강조한다.

닉네임 패스워드 도배방지 숫자 입력
내용
기사 내용과 관련이 없는 글, 욕설을 사용하는 등 타인의 명예를 훼손하는 글은 관리자에 의해 예고 없이 임의 삭제될 수 있으므로 주의하시기 바랍니다.
 
광고
포토뉴스
메인사진
[포토]지리산 노고단에 핀 진달래
1/23
연재
광고